	Lean Controls	Obese	Obese DM2	Normal
				Range
Subjects in Group	6	7	11	
Age (years)	$\textbf{39.1} \pm \textbf{9.8}$	$\textbf{36.4} \pm \textbf{9.8}$	$\textbf{47.0} \pm \textbf{11.9}$	
Body mass index (kg/m²)	$\textbf{22.6} \pm \textbf{3.5}$	49.1 ± 6.9 †	47.2 ± 7.0 †	18.5-29.9
Fasting Glucose (mmol/L)	$\textbf{4.6} \pm \textbf{0.8}$	5.3 ± 0.4	7.7 \pm 0.4 *	< 6.1
Fasting Insulin (pmol/L)	$\textbf{62.5} \pm \textbf{38.8}$	166.7 ± 113.2*	$345.9 \pm 235.4^{*}$	60
Cholesterol (mmol/L)	$\textbf{4.6}\pm\textbf{0.7}$	5.7 ± 0.3 *	$\textbf{4.5}\pm\textbf{0.9}$	3-5
Triglycerides (mmol/L)	$\textbf{0.7}\pm\textbf{0.2}$	$\textbf{2.1}\pm\textbf{0.7}$	1.6 ± 1.0	1.1-1.7

Supplementary Table 1. Characteristics of study subjects

Mean <u>+</u> SD; * p<0.05, † p<0.005 vs. lean controls. To convert to mg/dL divide: glucose by 0.0555, cholesterol by 0.0259 and triglycerides by 0.0113. To convert insulin to mU/L divide by 6.945. Supplemental Figure 1

Supplemental Figure 2

Supplemental Figure 3

Β.

Supplemental figures legend

Supplemental Figure 1

A) Area under curve for glucose tolerance test of wild type vs. PKC δ KO mice (n=5 per group, *: p<0.05). **B**) Glucose tolerance tests (GTT) in mice overexpressing GFP (white bars) or PKC δ (black bars) in the liver (n=13 per group, *: p<0.05). **C**) Insulin tolerance tests (ITT) in mice overexpressing GFP (white bars) or PKC δ (black bars) in the liver (n=9 per group, *: p<0.05). **D**) Pyruvate tolerance tests (PTT) in mice overexpressing GFP (white bars) or PKC δ (black bars) or PKC δ (black bars) in the liver (n=9 per group, *: p<0.05). **D**) Pyruvate tolerance tests (PTT) in mice overexpressing GFP (white bars) or PKC δ (black bars) or PKC δ (black bars) or PKC δ (black bars) in the liver (n=19 per group, *: p<0.05). **E**) Glucose tolerance test of PKC δ -floxed mice injected with empty (white bars) or Cre recombinase expressing adenovirus (black bars) following 10 weeks of CD or HFD (n=6 per group, *: p<0.05).

Supplemental Figure 2

A) Expression of PKCδ mRNA was measured by qPCR using extracts of liver from leptin and/or insulin treated ob/ob mice (n=6 per group) **B**) Glucose tolerance tests (GTT) in 129 (circles) or B6 mice (triangles) overexpressing GFP (white) or PKCδ (black) in the liver (n= 4-5 per group). Significance tests between groups were as follows: &: 129AdPKC vs B6AdGFP P<0.01, *: 129AdGFP vs B6AdGFP P<0.02, #: 129AdGFP vs 129AdPKC P<0.03. **C**) Targeting strategy used to generate PKCδ conditional knock-out mice. **D**) Serum metabolites from 2 hour fasted PKCδ-floxed mice injected with empty (white bars) or Cre recombinase expressing adenovirus (black bars) following 10 weeks of HFD (n=6 per group). **E**) Histological pictures of hematoxylin and eosin liver sections

from PKC δ -floxed mice injected with empty (left panel) or Cre recombinase expressing adenovirus (right panel) following 10 weeks of HFD (n=6 per group). **F**) Hepatic triglyceride content from PKC δ -floxed mice injected with empty (white bars) or Cre recombinase expressing adenovirus (black bars) following 10 weeks of HFD (n=6 per group).

Supplemental Figure 3

A) Expression of PKCδ mRNA in liver was measured by qPCR for vehicle or LPStreated C57BL/6J and 129SvEv mice (n=5 per group). **B**) Western-blot analysis of PKCδ, Bip and actin expression in liver of tunicamycin-treated animals. qPCR analysis of mRNA expression of PKCδ in **C**) control, streptozotocin and insulin rescued mice (n=13/11/14 per group) and **D**) control, streptozotocin and phlorizin-rescued mice (n=5/6/5 per group). **E**) Expression of inflammatory markers TNFa, MCP1, F4/80 and CD68 mRNA was measured by qPCR in visceral fat depot of WT and PKCδKO mice (n=4 per group). All gene expression results are normalized to TBP or 18S.